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SOLIDIFICATION OF DROPLETS ON A COLD SURFACE 
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Abstract-Title problem has been investigated theoretically and experimentally. In the theory a simple 
model of two-dimensional radial flow has been used. The degree of flattening &,, of a droplet depends 
upon the Weber, Reynolds and P&let numbers, and upon the freezing constant U, taken from the 
solution of a Stefan problem. The agreement of the theory with experiments is not bad if the constant U 

is taken for the Stefan problem with the isothermal cooling surface. 
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NOMENCLATURE 

surface covered by a droplet; 
thermal diffusivity; 

thickness of the liquid layer; 
constant; 
specific heat; 

droplet diameter; 
kinetic and potential energies; 
latent heat of fusion; 
parameter; 
work of friction; 
= wD/a, P&let number; 
= p’wD/p, Reynolds number; 
radius of the disk; 

co-ordinate; 
dimensionless temperature; 

temperature; 
dimensionless time; 

time; 
freezing constant; 
volume of the solidified layer; 

= p’w’D/o, Weber number; 
droplet velocity; 

w,, wr, velocity components; 

X, co-ordinate; 

4’7 thickness of the solidified layer. 

Greek symbols 

a, angle; 

e, constant; 

2, heat conductivity; 

u viscosity; 

Pa density; 

0, surface tension ; 
5, dimensionless variable, or shear stress; 

5, dimensionless radius of the disk. 

1. INTRODUCTION 

THE QUALITY of layers obtained by means of plasma 
spraying depends on the mechanism of the deformation, 
solidification, and adhesion of the droplets striking on 
the surface to be covered. The purpose of the present 
study is to investigate the process m order to determine 
the degree offlattening of the solidifying droplets, or the 
area A covered by a droplet of diameter D. The principal 

FIG. 1. 

difficulty of the problem consists in the interaction of 
the two simultaneous processes, namely that of the 
motion of the liquid, and that of its solidification. 

Therefore in the construction of the model several 
simplifications must be done. Figure 1 shows a photo- 
graph of alumina (A1203) disks or “cakes” obtained 
in spraying of droplets of diameter D = 2. lo-‘- 
4. 10m5 m impinging onto the surface with a velocity w 
of about 2OOms-‘. The area covered by a droplet 
could be estimated, and the ratio 

e,=; ; 
J 

(1) 

was found to be 5-6. A similar form of the disk of lead 
(droplet diameter D = 3.259mm, A = 174mm2, &,, = 

1009 
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4.567, w = 3.923 m s-“)is shown in Fig. 5 (specimen ClO). 
In both cases the circumference of the disks is jagged 
due to droplet vibrations, but as a first attempt the 
form of a regular circle may be used as a model. 

2. THEORY 

A droplet of diameter D impinging perpendicularly 
on the cold surface flattens to form a cylinder of radius 
R(t’) growing with time t’ (Fig.2). Because of the 

R(t’) 

I 
fb! 

FIG. 2. 

growth of the radius the thickness of the solidified 
layer y is greater in the centre than on the periphery. 
In the analogous Stefan problems this thickness is 
equal to 

y = u JWf, (2) 

where a is the thermal diffusivity of the solidified layer, 
and U is a constant depending upon the Jakob num- 
ber. In the case considered there is y = y(r), because 
the freezing begins at r in the moment z’ when r = Rfz’). 
Therefore we assume 

y(r) = U J[a(t’ -z’)] (3) 

for r > Ra. For r < Ro = R(0) there is 

yo = u&t’) (4) 

as shown in Fig. 2. The volume of the solid layer is 
thus given by 

v, = nR;yo+ 
s 

T* =I’ 
2zR(z’)*y.dR(r’) (5) 

r’=O 

or 

v, = nR;4 U ,/(a’) 

s ,’ 

f 21rR(2’) 7 U ,/[a@ - 7’)] dz’. (6) 
0 

The next simplification consists in assumption of the 
liquid layer thickness b depending only upon time t’, 
as shown in Fig. 2. Therefore the mass balance of the 
disk yields 

m = %D3p’ = pV,fnR’bp’, (7) 

where m is the mass of the droplet, and p, p’ are the 
densities of the solid and the liquid, respectively. Hence 

n 

b(t’) = 

z D3p’-pv, 

lTR2p’ (8) 

lEJSKl 

The motion or flattening of the disk (droplet) will be 
described by means of the energy equation 

&+Ep+L,)= 0, (9) 

where Ek is the kinetic energy, E, the potential one, 
and Ls the work of friction forces. 

To determine the kinetic energy and the work of 
friction the information about the velocity field is 
necessary. The simplest velocity distribution 

w, = -cx2, w, = Cxr, 

fulfilling only the continuity equation 

(10) 

f (rw,) + & (rw,) = 0, 01) 

will be assumed. The constant C appearing above will 
be expressed in terms of the disk expansion dR,idt’; 
the latter will be assumed as the average velocity on 
the periphery, namely 

dR/dt’ = ; 
s 

b w,dx = CbRfi, (12) 
0 

whence 

C = ,“h dR/dt’. (13) 

The kinetic energy can be now calculated in this way 
R 

s s 

b 

Ek = 271 rdr dx +p’(w,2 + w:) (14) 
0 0 

or, with use of (10) and (13) 

*.(bRZ+&b3)=Ek(t’). (15) 

The initial value is that of the falling droplet, namely 

E,(O) = % D3p’ $. 

Assuming the initial radius as a portion of droplet 
diameter 

R(0) = R. = ED 

we can calculate the initial radid expansion 

(17) 

(18) 

The friction power may be assumed in this form 

dLf R 2nr drzw dt’=* *y 
s 

(19) 

where 

(20) 

‘is the shear stress, and g the dynamic viscosity of the 
liquid; also 

1 b 
w,=- 

s 

r dR 

b o 
w,dx=-- 

R dt’ 
(21) 
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is the average radial velocity. Substitution of (20) and 
(21) into (19) yields 

(22) 

The,potential energy is due to the surface tension u 
acting on the free surface of the disk, thus 

E, = a(~R~f2nRb). (23) 

In the initial moment t’ = 0 this energy should be equal 
to the potential energy of the droplet 

E, = nolIz. (24) 

However, on substituting (17), one obtains 

The deficiency of the model consists in that it is not 
possible to assume a value of E fulfilling the condition 
E, = EJO). A discussion of this problem is given in 
[l]. For the further analysis the value E = 0.5 is 
assumed, and this results in an error of 8% in the initial 
value of the potential energy. 

Substituting now (15) (22) and (23) in (9) and intro- 
ducing the dimensionless variables 

5 = R/Ro, 9 = b/R,,, t = wtf~R~ (26) 

as well as the Weber, Reynolds, and P&let numbers 

We = p’Dw’/a, Re = p’wD/p, Pe = wD/a (27) 

and the parameter 

we arrive at the equation 

; ~C’.(C’+t~‘)+~5(5+28) 1 . +s= 0, (29) 

where 

cp =&+k[J1+2j;&)&)&t-~)d~]} (30) 

and the point denotes differentiation with respect to 
the ~mensionless time. The boundary conditions for 
this inte~o-differential equation are 

5(O)= 1, 5(O)= d ___ 312 1 

1+& 

. (31) 

Knowing the solution c(t) we are able to find the 
rn~~~ value &,, at which 4 = 0. 

The value &,,, defined by equation (I), is a function 
of three parameters, namely k, Re and Wi, therefore 
a general formula for &,, is difficult to find. Several 
special cases have been analyzed numerically. For 
k=O= Rem1 wehavefound 

Cm = J(We13) (32) 

if We > 100. For smaller values of the Weber number 
this formula is not true; e.g. for We = 5 we have found 

mm = 2.000, and for We = 20, cm = 3.077; other values 
are given in [ 11. 

Likewise, for k = 0 = We-’ the formula 

trn = 1.2941(Re+0.9517)‘~5 (33) 

gives good results. For Re > 100 this formula can be 
simplified thus 

&,, = 1.2941Re”‘. (34) 

In the general case of k = 0, concerning the flattening 
of an impinging droplet without solidification, the value 
of 5, can be calculated from the following equation 

(35) 

provided that We > 100, Re > 100. 
The case with solidification (k > 0) has been studied 

numerically. The results are illustrated by the graph 
Fig. 3.. For the case Re-’ = 0, We-’ = 6 the 

l&Xl, 

numerical results may be represented by an approxi- 
mate formula 

&,, = 1.5344k-a.395. (36) 

An extensive discussion of the solution is given in [l]. 

3. EXPERIMENTAL STUDY, CONCLUSIONS 

In experiments the velocity of the droplet, and the 
area covered by it, can be measured without serious 
di~culties. The droplet diameter, however, if deter- 
mined by weight is impossible to be measured since 
the mass of an alumina particle of D = 2. 10m5 m is 

1.3 - lo-’ g. The method of diameter determination by 
weight can be applied only to droplets of greater 
diameters such as have been used in the present 
ex~rimental study in which lead or tin droplets were 
thrown on a flat surface, in genera1 inclined at the 
angle a from the horizontal. Most of the experimental 
points have been obtained for a horizontal surface 
(ct = 0) of various materials as wood, gypsum, Plexiglas, 
copper, steel, alurninium. These 81 points are marked 
in Fig. 4 by circles. The range of the Weber numbers 
was 25-7300, that of the Reynolds numbers 11 OOO- 
15Ooo0, that of the P&let numbers 70-1300. In plasma 
spraying of alumina powder these values vary in the 
range We = 1000-10000, Pe = 400&8000. 
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The accuracy of the experiments left much to be 
desired because it was difficult to maintain the droplet 

in the state of liquid at the temperature of fusion. 

Because of the great values of the Weber and Reynolds 
numbers an attempt was made to correlate the results 
in a form given by (36) as it is shown in Fig. 4. In order 

to calculate the number U, appearing in (2) and (28), 
one was obliged to decide which case of solidification 

should be chosen for the case considered. At hand was 

the equation, determining the quantity U, for the Stefan 
problem of solidification from a half-space of super- 
heated liquid of temperature Ti > T,‘, with T,’ as the 
temperature of fusion, on the surface of a half-space 

with 1,, cJ, pr and a/ = ir/cfpf as the heat conduc- 
tivity, specific heat, density, and thermal diffusivity of 
the mould, namely 

where ,, 
T =m-Td) 

apAh ’ 
T = W-T,‘) 
’ aphh ’ 

(38) 

and Td denotes the initial temperature of the mould, 
whereas Ah is the latent heat of fusion. Disregarding 
the superheat of the liquid TP = 0 must be put. In this 
case the equation (37) is also valid for the isothermal 

case in which J(kp/Afcfpf) = 0. 

The analysis of the experimental results has shown 
that the thermal properties of the cold surface. on which 
the droplets solidify, have essentially no influence on 
the value of &,,, and this fact has been observed as well 

for isolators as for good conductors as aluminium or 
copper. Although this result is not quite clear, we have 
used the value of U calculated from (37) for the 

isothermal case, i.e. 

At Td = 293 K we have calculated 7, = 0.8084 and 
U = 1.1387 for tin, TO = 1.4848 and II = 1.4410 for 

lead, To = 3.0962 and U = 1.8454 for alumina Al203. 
The range of the numbers k was therefore 0.035-0.16 

in the experiments, whereas for the alumina particles 
(Fig. 1) there was k = 0.0238-0.0337. In Fig. 4 the curve 
(36) has been drawn showing that the agreement 
between theory and experiments is not very bad. The 
shadowed area in Fig. 4 shows the range of data for 

AlzOs droplets. In further study the influence of the 

angle tl has been investigated. The photograph in Fig. 5 
shows ten specimens of lead thrown on an aluminium 

FIG. 5 

Table 1 

Exp. u D w A 
No. (degrees) (mm) (ms-‘) (mm’) 

We Re Pe k &I 

Cl 
c2 
c3 
c4 
C5 
C6 
C7 
C8 
c9 

Cl0 

57.44 3.955 3.76 316 1307.4 70824 614.1 0.0660 5.071 

57.44 4.769 3.90 548 1696.0 80580 699.3 0.0590 5.539 

57.44 3.811 3.70 384 1219.9 67156 582.8 0.0678 5.802 

74.34 4.649 3.89 657 1644.9 86130 747.5 0.0598 6.221 

74.34 3.362 3.70 214 1076.2 59244 514.2 0.072 I 5.555 

74.34 2.887 3.70 162 924.1 50874 441.5 0.0779 4.974 

41.08 4.344 3.80 445 1466.7 78617 682.3 0.0626 5.480 

41.08 3.107 3.74 208 1016.2 55342 480.3 0.0746 5.238 
41.08 3.286 3.73 188 1069.0 58374 506.6 0.0727 4.709 

0 3.259 3.98 174 1207.1 61775 536.1 0.0707 4.561 
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surface. The data for these tests are given in Table 1. 

Althou~ the “disks” for the case of the surface nearly 

vertical (a = 74.34”) are elongated, the ratios &,, do not 

differ from those obtained for a = 0. Previously it was 
thought fit to prepare a similar theory for one-dimen- 
sional flow of liquid, but the experimental results 
(Table 1) do not confirm it; this theory for We-’ = 0 = 
Re-’ gives somewhat lower values of &,, represented 
in Fig. 4 by the dotted line. 

Another theoretical attempt was made [l] to take 

into account the intensive cooling on the disk bound- 

ary. The theoretical corrections gave some small im- 

provement in the agreement with experiments; how- 

ever these corrections are not taken into account in 
the correlation in Fig. 4. 
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SOLIDIFICATION DE GOUTTELETTES SUR UNE SURFACE FROIDE 

R&sum&-Le probleme annond dans le titre a Cte trait6 par voie theorique et experimentale. La theorie 
utilise un modele simple d’ecoulement radial bidimensionnel. Le degre d’aplatissement dune gouttelette 
Em depend des nombres de Weber, de Reynolds et de P&let ainsi que de la constante de congelation U 
obtenue par resolution dun probleme de St&fan. L’accord entre thtorie et experience n’est pas mauvais 
lorsque la constante U, dam le probleme de St&fan, est relative ;i une surface de refroidissement isotherme. 

DAS ERSTARREN VON TROPFEN AUF EINER KALTEN OBERFLACHE 

Znsammenfassung-Das Problem des Erstarrens von Tropfen auf einer kalten OberllIche wurde 
theoretisch und experimentell untersucht. In der Theorie wird von dem einfachen Model1 einer zwei- 
dimensionalen Radialstromung Gebrauch gemacht. Der Abflachungsgrad &,, eines Tropfens hangt von 
der Webe-, der Reynolds- und der P&let-Zahl ab, sowie von der Erstarrungskonstanten U, die aus 
der Losung des Stefan-Problems entnommen wird. Die ~~reinstimmung der Tbeorie mit den Versuchs- 
ergebnissen ist befriedigend, wenn die Konstante U aus der Msungfiir das Stefan-Problem mit isothermer 

Kiihlfllche gewonnen wird. 

3ATBEPflEBAHEIE KAI-IEJIb HA XOJ.IOll[HOfi I-IOBEPXHOCTM 

Asmm - Hasnamrar 3aAaYa HCCJleAyeTCR TeO~TK’ECICH H 3KCIR?pHMeHTZlJTbHO. B TeOpHlI 

HCIIOAb3yeTCR IQOCTZW MOARnb ABYMepHOrO PaAHanbHOrO Te’ieHUSi. ~TelleHb BbiPaBHUBaHUP KLUKJiH 

&, 3aBEiCHT OT WiWJi &&pa, P&iOJlbACa H &ZUIe H OT ROCTO~HHO~ 3ZiMep3aHHI u, B311108 83 

peIIIt?mR 3aAaYH CTe@aHa. COOTBeTCTBSie TeOpHH C 3KClIePWMeHTOM RBJIReTCSl Ht2iUIOXEiM, tWIS% 

ITOCTORHIiUl u tiepeTCX AAfi 3aAWiH CT‘Z@tHa C H3OTepMliV4CKOZt OXJEiXCAaeMOff llOBepXHOCTbl0. 


